
C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Module 4

USER – DEFINED FUNCTIONS

INTRODUCTION:

A function is a block of code that performs a particular task.

C functions can be classified into two categories:

1. Library functions

2. User-defined functions

Library functions are those functions which are already defined in C library, example printf (),

scanf (), strcat () etc. You just need to include appropriate header files to use these functions. These

are already declared and defined in C libraries.

A User-defined functions on the other hand, are those functions which are defined by the user at

the time of writing program. These functions are made for code reusability and for saving time and

space.

Benefits of Using Functions

1. It provides modularity to your program's structure.

2. It makes your code reusable. You just have to call the function by its name to use it,

wherever required.

3. In case of large programs with thousands of code lines, debugging and editing becomes

easier if you use functions.

4. It makes the program more readable and easier to understand.

Elements of user-defined function in C

There are 3 key elements of UDF (User defined function)

1. Function Declaration (or Function Prototype)

2. Function Call

3. Function Definition

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Function Declaration (or Function Prototype):

A function declaration is a frame (prototype)of function that contains the function’s

name, list of parameters and return type and ends with the semicolon, but it doesn’t contain the

function body. Function declaration is not a mandatory field in the program.

Syntax:

return_Type function_Name (formal parameter1, parameter2,);

Every function declaration must contain the following 3 parts and ends with the semicolon in C

language

1. function name – name of the function is sum_Num ()

2. return type – the return type of the function is int

3. arguments – two arguments of type int are passed to the function

Example:

Example of the function declaration

int sum_Num (int x, int y,);

In the above example, int sum_Num (int x, int y); is a function declaration which contains the

following information.

Function Call:

When a function is called, control of the program gets transferred to the function.

Syntax:

Example:

function_Name (Actual Argument list);

sum_Num (10,20);

When the function is called, the control flow of the program move to function definition and

statements executes the inside body of the function

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Function Definition:

The function definition is an expansion of function declaration. It contains codes in the

body part of the function for execution program by the compiler – it contains the block of code for

the special task.

The syntax of the function definition

return_Type function_name (formal parameter_1, parameter_2. ..)

{

//statements

//body of the function

}

1. function name – name of the function is sum_Num ()

2. return type – the return type of the function is int

3. arguments – two arguments of type int are passed to the function

4. body of function – specifies actions to be performed

return statements

Return statements terminate the execution of the function and return value to calling

the function. Also, return statements control of the program control and moved to the calling

function.

Syntax:

Example:

return (expression);

return (result);

return (x+y);

Program Examples:

1. Write a C program to perform division of two numbers using functions.

#include <stdio.h>

int division(int x,int y); //function declaration or prototype

void main()

{

int a, b, div;

printf("Please enter 2 numbers for division\n");

scanf("%d%d",&a,&b);

div=division(a, b); //function call

printf("The result of division is :%d",div);

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

int division (int a, int b)

{

int result;

result=a/b;

return result; //return statements

}

2. Write a C program to add two numbers using function.

#include <stdio.h>

int addNumbers(int a, int b); // function prototype

void main()

{

int n1,n2,sum;

printf("Enters two numbers: ");

scanf("%d %d",&n1,&n2);

sum = addNumbers(n1, n2); // function call

printf("sum = %d",sum);

}

int addNumbers(int a, int b) // function definition

{

int result;

result = a+b;

return result; // return statement

}

3. Write C program to find SUM and AVERAGE of two integer Numbers using User Define

Functions.

#include <stdio.h>

int sumTwoNum(int, int); /*to get sum*/

float averageTwoNum(int, int); /*to get average*/

void main()

{

int number1, number2;

int sum;

float avg;

printf("Enter the first integer number: ");

scanf("%d", &number1);

printf("Enter the second integer number: ");

scanf("%d", &number2);

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

/*function calling*/

sum = sumTwoNum(number1, number2);

avg = averageTwoNum(number1, number2);

printf("Number1: %d, Number2: %d\n", number1, number2);

printf("Sum: %d, Average: %f\n", sum, avg);

}

int sumTwoNum(int x, int y)

{

int sum; /*x and y are the formal parameters*/

sum = x + y;

return sum;

}

float averageTwoNum(int x, int y)

{

float average; /*x and y are the formal parameters*/

return ((float)(x) + (float)(y)) / 2;

}

4. Write C program to print Table of an Integer Number using User Define Function.

#include <stdio.h>

void printTable(int); /*function declaration*/

void main()

{

int number;

printf("Enter an integer number: ");

scanf("%d", &number);

printf("Table of %d is:\n", number);

printTable(number);

return 0;

}

void printTable(int num)

{

int i;

for (i = 1; i <= 10; i++)

printf("%5d\n", (num * i));

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Types of the user-defined function in C language:

User defined function in C can be categorized into four types:

1. function with no return value and without argument

2. function with no return value and with an argument

3. function with a return value and without argument

4. function with a return value and with an argument

Function with no return value and without argument

In this method, we won’t pass any arguments to the function while defining, declaring,

or calling it. This type of functions in C will not return any value when we call the function from

main () or any sub-function. When we are not expecting any return value, but we need some

statements to print as output. Then, this type of function in C is very useful.

#include<stdio.h>

void Addition();

void main()

{

printf("\n \n");

Addition();

}

void Addition()

{

int Sum, a = 10, b = 20;

Sum = a + b;

printf("\n Sum of a = %d and b = %d is = %d", a, b, Sum);

}

Function with no return value and with an argument

In this category, function has some arguments. It receives data from the calling

function, but it doesn’t return a value to the calling function. The calling function doesn’t receive

any data from the called function. So, it is one way data communication between called and calling

functions.

#include<stdio.h>

void Addition(int, int);

void main()

{

int a, b;

printf("\n Please Enter two integer values \n");

scanf("%d %d",&a, &b);

Addition(a, b);

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

void Addition(int a, int b)

{

int Sum;

Sum = a + b;

printf("\n Additiontion of %d and %d is = %d \n", a, b, Sum);

}

Function with a return value and without argument

In this category, the functions have no arguments and it doesn’t receive any data from

the calling function, but it returns a value to the calling function. The calling function receives data

from the called function. So, it is one way data communication between calling and called functions.

#include<stdio.h>

int Multiplication ();

void main ()

{

int Multi;

Multi = Multiplication ();

printf ("\n Multiplication of a and b is = %d \n", Multi);

}

int Multiplication ()

{

int Multi, a = 20, b = 40;

Multi = a * b;

return Multi;

}

Function with a return value and with an argument

In this category, functions have some arguments and it receives data from the calling

function. Similarly, it returns a value to the calling function. The calling function receives data from

the called function. So, it is two-way data communication between calling and called functions.

#include<stdio.h>

int Multiplication(int, int);

void main()

{

int a, b, Multi;

printf("\n Please Enter two integer values \n");

scanf("%d %d",&a, &b);

Multi = Multiplication(a, b);

printf("\n Multiplication of %d and %d is = %d \n", a, b, Multi);

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

int Multiplication(int a, int b)

{

int Multi;

Multi = a * b;

return Multi;

}

Difference between call by value and call by reference

Call By Value Call By Reference

While calling a function, we pass values of

variables to it. Such functions are known as

“Call by Values”.

While calling a function, instead of passing

the values of variables, we pass address of

variables (location of variables) to the

function known as “Call by References

In this method, the value of each variable in

calling function is copied into corresponding

dummy variables of the called function.

In this method, the address of actual

variables in the calling function are copied

into the dummy variables of the called

function.

With this method, the changes made to the

dummy variables in the called function have

no effect on the values of actual variables in

the calling function.

With this method, using addresses we would

have an access to the actual variables and

hence we would be able to manipulate them.

In call by values, we cannot alter the values

of actual variables through function calls.

In call by reference, we can alter the values

of variables through function calls.

Values of variables are passes by Simple

technique.

Pointer variables are necessary to define to

store the address values of variables

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Formal Parameter and Actual Parameter:

Functions and Arrays:

In C programming, you can pass an entire array to functions. Before we learn that, let's

see how you can pass individual elements of an array to functions.

Pass Individual Array Elements

Passing array elements to a function is similar to passing variables to a function.

#include <stdio.h>

void display(int age1, int age2)

{

printf("%d\n", age1);

printf("%d\n", age2);

}

void main()

{

int ageArray[] = {2, 8, 4, 12};

display(ageArray[1], ageArray[2]);

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Pass Arrays to Functions

Here we will be passing entire array to function.

Write a C program to calculate the sum, mean and standard deviation of an array elements using

functions.

#include<stdio.h>

#include<math.h>

int sum(int a[], int n);

int sum1(int a[], int mean, int n);

void main()

{

int i, n, a[100];

float m, v, sd, sum, sum1;

printf(“Enter total number of elements\n”);

scanf(“%d”, &n);

printf(“Enter array elements\n”);

for(i=0;i<n;i++)

{

scanf(“%d”, &a[i]);

}

sum = sum(a, n);

printf(“Sum of the elements = %d\n”, sum);

m = sum/n;

printf(“Mean = %f\n”, m);

sum1 = sum1(a, m, n);

v = sum1/n;

sd = sqrt(v);

printf(“Standard deviation = %f\n”, sd);

}

int sum(int a[], int n)

{

int i, sum=0;

for(i=0;i<n;i++)

{

sum = sum + a[i];

}

return sum;

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

int sum1(int a[], int m, int n)

{

int sum1=0, i;

for(i=0;i<n;i++)

{

sum1 = sum1 + pow((a[i] – m), 2);

}

return sum1;

}

Recursion

INTRODUCTION

In C, when a function calls a copy of itself then the process is known as Recursion. To

put it short, when a function calls itself then this technique is known as Recursion. And the function

is known as a recursive function.

Syntax:

void main()

{

...

recurse();

...

}

void recurse()

{

...

recurse();

...

}

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

Example: Write a C program to find the Sum of Natural Numbers Using Recursion

#include <stdio.h>

int sum(int n);

void main()

{

int number, result;

printf("Enter a positive integer: ");

scanf("%d", &number);

result = sum(number);

printf("sum = %d", result);

}

int sum(int n)

{

if (n != 0)

return n + sum(n-1);

else

return n;

}

Write a C program to generate Fibonacci series

#include<stdio.h>

int Fibonacci(int);

void main()

{

int n, i = 0, c;

printf("Enter n value\n");

C Programming for Problem Solving – 21CPS13/23

Mr. Suhas A Bhyratae, Dept. of CSE, SCEM, Mangaluru

scanf("%d",&n);

printf("Fibonacci series\n");

for (c = 1 ; c <= n ; c++)

{

printf("%d\n", Fibonacci(i));

i++;

}

}

int Fibonacci(int n)

{

if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return (Fibonacci(n-1) + Fibonacci(n-2));

}

Write a C program to find the factorial of a number

#include<stdio.h>

int factorial(int n)

{

if (n == 0)

return 1;

else

return(n * factorial(n-1));

}

void main()

{

int number;

long fact;

printf("Enter a number: ");

scanf("%d", &number);

fact = factorial(number);

printf("Factorial of %d is %ld\n", number, fact);

}

