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Module 4 

USER – DEFINED FUNCTIONS 

INTRODUCTION: 

A function is a block of code that performs a particular task. 

C functions can be classified into two categories: 

1. Library functions 

2. User-defined functions 

 

Library functions are those functions which are already defined in C library, example printf (), 

scanf (), strcat () etc. You just need to include appropriate header files to use these functions. These 

are already declared and defined in C libraries. 

A User-defined functions on the other hand, are those functions which are defined by the user at 

the time of writing program. These functions are made for code reusability and for saving time and 

space. 

Benefits of Using Functions 

1. It provides modularity to your program's structure. 

2. It makes your code reusable. You just have to call the function by its name to use it, 

wherever required. 

3. In case of large programs with thousands of code lines, debugging and editing becomes 

easier if you use functions. 

4. It makes the program more readable and easier to understand. 

Elements of user-defined function in C 

There are 3 key elements of UDF (User defined function) 

1. Function Declaration (or Function Prototype) 

2. Function Call 

3. Function Definition 
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Function Declaration (or Function Prototype): 

A function declaration is a frame (prototype)of function that contains the function’s 

name, list of parameters and return type and ends with the semicolon, but it doesn’t contain the 

function body. Function declaration is not a mandatory field in the program. 

Syntax: 
 

return_Type function_Name (formal parameter1, parameter2, ...... ); 

Every function declaration must contain the following 3 parts and ends with the semicolon in C 

language 

1. function name – name of the function is sum_Num () 

2. return type – the return type of the function is int 

3. arguments – two arguments of type int are passed to the function 

Example: 

Example of the function declaration 

int sum_Num (int x, int y, ......... ); 

In the above example, int sum_Num (int x, int y); is a function declaration which contains the 

following information. 

Function Call: 

When a function is called, control of the program gets transferred to the function. 

Syntax: 

 

 
Example: 

 

 
function_Name (Actual Argument list); 

 

 
sum_Num (10,20); 

When the function is called, the control flow of the program move to function definition and 

statements executes the inside body of the function 
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Function Definition: 

The function definition is an expansion of function declaration. It contains codes in the 

body part of the function for execution program by the compiler – it contains the block of code for 

the special task. 

The syntax of the function definition 

return_Type function_name (formal parameter_1, parameter_2. .. ) 

{ 

//statements 

//body of the function 

} 

1. function name – name of the function is sum_Num () 

2. return type – the return type of the function is int 

3. arguments – two arguments of type int are passed to the function 

4. body of function – specifies actions to be performed 

return statements 

Return statements terminate the execution of the function and return value to calling 

the function. Also, return statements control of the program control and moved to the calling 

function. 

Syntax: 

 

 
Example: 

return (expression); 

 

 
return (result); 

return (x+y); 

 

Program Examples: 

1. Write a C program to perform division of two numbers using functions. 

#include <stdio.h> 

int division(int x,int y); //function declaration or prototype 

void main() 

{ 

int a, b, div; 

printf("Please enter 2 numbers for division\n"); 

scanf("%d%d",&a,&b); 

div=division(a, b); //function call 

printf("The result of division is :%d",div); 

} 
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int division (int a, int b) 

{ 

int result; 

result=a/b; 

return result; //return statements 

} 

 
2. Write a C program to add two numbers using function. 

 
#include <stdio.h> 

int addNumbers(int a, int b); // function prototype 

void main() 

{ 

int n1,n2,sum; 

printf("Enters two numbers: "); 

scanf("%d %d",&n1,&n2); 

sum = addNumbers(n1, n2); // function call 

printf("sum = %d",sum); 

} 
 

int addNumbers(int a, int b) // function definition 

{ 

int result; 

result = a+b; 

return result; // return statement 

} 
 

3. Write C program to find SUM and AVERAGE of two integer Numbers using User Define 

Functions. 

 
#include <stdio.h> 

int sumTwoNum(int, int); /*to get sum*/ 

float averageTwoNum(int, int); /*to get average*/ 

 
void main() 

{ 

int number1, number2; 

int sum; 

float avg; 

 
printf("Enter the first integer number: "); 

scanf("%d", &number1); 

 
printf("Enter the second integer number: "); 

scanf("%d", &number2); 
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/*function calling*/ 

sum = sumTwoNum(number1, number2); 

avg = averageTwoNum(number1, number2); 

 
printf("Number1: %d, Number2: %d\n", number1, number2); 

printf("Sum: %d, Average: %f\n", sum, avg); 

} 

int sumTwoNum(int x, int y) 

{ 

int sum; /*x and y are the formal parameters*/ 

sum = x + y; 

return sum; 

} 

float averageTwoNum(int x, int y) 

{ 

float average; /*x and y are the formal parameters*/ 

return ((float)(x) + (float)(y)) / 2; 

} 
 

4. Write C program to print Table of an Integer Number using User Define Function. 

#include <stdio.h> 

void printTable(int); /*function declaration*/ 

void main() 

{ 

int number; 

 
printf("Enter an integer number: "); 

scanf("%d", &number); 

 
printf("Table of %d is:\n", number); 

printTable(number); 
 

return 0; 

} 

void printTable(int num) 

{ 

int i; 
 

for (i = 1; i <= 10; i++) 

printf("%5d\n", (num * i)); 

} 
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Types of the user-defined function in C language: 
 

User defined function in C can be categorized into four types: 

 
1. function with no return value and without argument 

2. function with no return value and with an argument 

3. function with a return value and without argument 

4. function with a return value and with an argument 

 
Function with no return value and without argument 

In this method, we won’t pass any arguments to the function while defining, declaring, 

or calling it. This type of functions in C will not return any value when we call the function from 

main () or any sub-function. When we are not expecting any return value, but we need some 

statements to print as output. Then, this type of function in C is very useful. 

#include<stdio.h> 

void Addition(); 

void main() 

{ 

printf("\n .............. \n"); 

Addition(); 

} 
 

void Addition() 

{ 

int Sum, a = 10, b = 20; 

Sum = a + b; 

printf("\n Sum of a = %d and b = %d is = %d", a, b, Sum); 

} 
 

Function with no return value and with an argument 

In this category, function has some arguments. It receives data from the calling 

function, but it doesn’t return a value to the calling function. The calling function doesn’t receive 

any data from the called function. So, it is one way data communication between called and calling 

functions. 

#include<stdio.h> 

void Addition(int, int); 

void main() 

{ 

int a, b; 

printf("\n Please Enter two integer values \n"); 

scanf("%d %d",&a, &b); 

Addition(a, b); 

} 
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void Addition(int a, int b) 

{ 

int Sum; 

Sum = a + b; 

printf("\n Additiontion of %d and %d is = %d \n", a, b, Sum); 

} 
 

Function with a return value and without argument 

In this category, the functions have no arguments and it doesn’t receive any data from 

the calling function, but it returns a value to the calling function. The calling function receives data 

from the called function. So, it is one way data communication between calling and called functions. 

#include<stdio.h> 

int Multiplication (); 

void main () 

{ 

int Multi; 

Multi = Multiplication (); 

printf ("\n Multiplication of a and b is = %d \n", Multi); 

} 

int Multiplication () 

{ 

int Multi, a = 20, b = 40; 

Multi = a * b; 

return Multi; 

} 
 

Function with a return value and with an argument 

In this category, functions have some arguments and it receives data from the calling 

function. Similarly, it returns a value to the calling function. The calling function receives data from 

the called function. So, it is two-way data communication between calling and called functions. 

 
#include<stdio.h> 

int Multiplication(int, int); 

void main() 

{ 

int a, b, Multi; 

printf("\n Please Enter two integer values \n"); 

scanf("%d %d",&a, &b); 

Multi = Multiplication(a, b); 

printf("\n Multiplication of %d and %d is = %d \n", a, b, Multi); 

} 
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int Multiplication(int a, int b) 

{ 

int Multi; 

Multi = a * b; 

return Multi; 

} 
 

 

Difference between call by value and call by reference 
 
 

Call By Value Call By Reference 

While calling a function, we pass values of 

variables to it. Such functions are known as 

“Call by Values”. 

While calling a function, instead of passing 

the values of variables, we pass address of 

variables (location of variables) to the 

function known as “Call by References 

In this method, the value of each variable in 

calling function is copied into corresponding 

dummy variables of the called function. 

In this method, the address of actual 

variables in the calling function are copied 

into the dummy variables of the called 

function. 

With this method, the changes made to the 

dummy variables in the called function have 

no effect on the values of actual variables in 

the calling function. 

With this method, using addresses we would 

have an access to the actual variables and 

hence we would be able to manipulate them. 

In call by values, we cannot alter the values 

of actual variables through function calls. 

In call by reference, we can alter the values 

of variables through function calls. 

Values of variables are passes by Simple 

technique. 

Pointer variables are necessary to define to 

store the address values of variables 
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Formal Parameter and Actual Parameter: 
 

 

 

 

 

 

 

 

Functions and Arrays: 

In C programming, you can pass an entire array to functions. Before we learn that, let's 

see how you can pass individual elements of an array to functions. 

Pass Individual Array Elements 

Passing array elements to a function is similar to passing variables to a function. 

#include <stdio.h> 

void display(int age1, int age2) 

{ 

printf("%d\n", age1); 

printf("%d\n", age2); 

} 

void main() 

{ 

int ageArray[] = {2, 8, 4, 12}; 

display(ageArray[1], ageArray[2]); 

} 
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Pass Arrays to Functions 

Here we will be passing entire array to function. 

 
Write a C program to calculate the sum, mean and standard deviation of an array elements using 

functions. 

 
#include<stdio.h> 

#include<math.h> 

int sum(int a[], int n); 

int sum1(int a[], int mean, int n); 

void main() 

{ 

int i, n, a[100]; 

float m, v, sd, sum, sum1; 

printf(“Enter total number of elements\n”); 

scanf(“%d”, &n); 

printf(“Enter array elements\n”); 

for(i=0;i<n;i++) 

{ 

scanf(“%d”, &a[i]); 

} 

sum = sum(a, n); 

printf(“Sum of the elements = %d\n”, sum); 

m = sum/n; 

printf(“Mean = %f\n”, m); 

sum1 = sum1(a, m, n); 

v = sum1/n; 

sd = sqrt(v); 

printf(“Standard deviation = %f\n”, sd); 

} 

int sum(int a[], int n) 

{ 

int i, sum=0; 

for(i=0;i<n;i++) 

{ 

sum = sum + a[i]; 

} 

return sum; 

} 
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int sum1(int a[], int m, int n) 

{ 

int sum1=0, i; 

for(i=0;i<n;i++) 

{ 

sum1 = sum1 + pow((a[i] – m), 2); 

} 

return sum1; 

} 
 

 

 

Recursion 

INTRODUCTION 

In C, when a function calls a copy of itself then the process is known as Recursion. To 

put it short, when a function calls itself then this technique is known as Recursion. And the function 

is known as a recursive function. 

Syntax: 

void main() 

{ 

... .. ... 

recurse(); 

... .. ... 

} 

 

void recurse() 

{ 

... .. ... 

recurse(); 

... .. ... 

} 
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Example: Write a C program to find the Sum of Natural Numbers Using Recursion 

 

 
#include <stdio.h> 

int sum(int n); 

void main() 

{ 

int number, result; 

printf("Enter a positive integer: "); 

scanf("%d", &number); 

result = sum(number); 

printf("sum = %d", result); 

} 

int sum(int n) 

{ 

if (n != 0) 

return n + sum(n-1); 

else 

return n; 

} 
 

 

 

Write a C program to generate Fibonacci series 

#include<stdio.h> 

int Fibonacci(int); 

void main() 

{ 

int n, i = 0, c; 

printf("Enter n value\n"); 
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scanf("%d",&n); 

printf("Fibonacci series\n"); 

for ( c = 1 ; c <= n ; c++ ) 

{ 

printf("%d\n", Fibonacci(i)); 

i++; 

} 

} 

int Fibonacci(int n) 

{ 

if ( n == 0 ) 

return 0; 

else if ( n == 1 ) 

return 1; 

else 

return ( Fibonacci(n-1) + Fibonacci(n-2) ); 

} 
 

 

Write a C program to find the factorial of a number 

#include<stdio.h> 

int factorial(int n) 

{ 

if (n == 0) 

return 1; 

else 

return(n * factorial(n-1)); 

} 

void main() 

{ 

int number; 

long fact; 

printf("Enter a number: "); 

scanf("%d", &number); 

fact = factorial(number); 

printf("Factorial of %d is %ld\n", number, fact); 

} 


